Flow-Induced Dilation of Human Coronary Arterioles
نویسندگان
چکیده
منابع مشابه
Flow-Induced Dilation of Human Coronary Arterioles
Background—Flow-induced vasodilation (FID) is a physiological mechanism for regulating coronary flow and is mediated largely by nitric oxide (NO) in animals. Because hyperpolarizing mechanisms may play a greater role than NO in the microcirculation, we hypothesized that hyperpolarization contributes importantly to FID of human coronary arterioles. Methods and Results—Arterioles from atria or ve...
متن کاملFlow-Induced Dilation of Human Coronary Arterioles Important Role of Ca-Activated K Channels
Background—Flow-induced vasodilation (FID) is a physiological mechanism for regulating coronary flow and is mediated largely by nitric oxide (NO) in animals. Because hyperpolarizing mechanisms may play a greater role than NO in the microcirculation, we hypothesized that hyperpolarization contributes importantly to FID of human coronary arterioles. Methods and Results—Arterioles from atria or ve...
متن کاملFlow-induced dilation of human coronary arterioles: important role of Ca(2+)-activated K(+) channels.
BACKGROUND Flow-induced vasodilation (FID) is a physiological mechanism for regulating coronary flow and is mediated largely by nitric oxide (NO) in animals. Because hyperpolarizing mechanisms may play a greater role than NO in the microcirculation, we hypothesized that hyperpolarization contributes importantly to FID of human coronary arterioles. METHODS AND RESULTS Arterioles from atria or ...
متن کاملRole for hydrogen peroxide in flow-induced dilation of human coronary arterioles.
Flow-induced dilation (FID) is dependent largely on hyperpolarization of vascular smooth muscle cells (VSMCs) in human coronary arterioles (HCA) from patients with coronary disease. Animal studies show that shear stress induces endothelial generation of hydrogen peroxide (H2O2), which is proposed as an endothelium-derived hyperpolarizing factor (EDHF). We tested the hypothesis that H2O2 contrib...
متن کاملH2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles.
RATIONALE Endothelial derived hydrogen peroxide (H(2)O(2)) is a necessary component of the pathway regulating flow-mediated dilation (FMD) in human coronary arterioles (HCAs). However, H(2)O(2) has never been shown to be the endothelium-dependent transferrable hyperpolarization factor (EDHF) in response to shear stress. OBJECTIVE We examined the hypothesis that H(2)O(2) serves as the EDHF in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Circulation
سال: 2001
ISSN: 0009-7322,1524-4539
DOI: 10.1161/01.cir.103.15.1992